Comment on "Frequency-dependent dispersion in porous media".

نویسندگان

  • Yohan Davit
  • Michel Quintard
چکیده

In a recent paper, Valdès-Parada and Alvarez-Ramirez [Phys. Rev. E 84, 031201 (2011)] used the technique of volume averaging to derive a "frequency-dependent" dispersion tensor, D(γ)(*), the goal of which is to describe solute transport in porous media undergoing periodic processes. We describe two issues related to this dispersion tensor. First, we demonstrate that the definition of D(γ)(*) is erroneous and derive a corrected version, D(γ)(*c). With this modification, the approach of Valdès-Parada and Alvarez-Ramirez becomes strictly equivalent to the one devised by Moyne [Adv. Water Res. 20, 63 (1997)]. Second, we show that the term "frequency-dependent dispersion" is misleading because D(γ)(*) and D(γ)(*c) do not depend on the process operating frequency, χ. The study carried out by Valdès-Parada and Alvarez-Ramirez represents a spectral analysis of the relaxation of D(γ)(*) towards its steady-state, independent of any periodic operation or excitation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

Comparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media

The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...

متن کامل

Dispersion of Torsional Surface Wave in a Pre-Stressed Heterogeneous Layer Sandwiched Between Anisotropic Porous Half-Spaces Under Gravity

The study of surface waves in a layered media has their viable application in geophysical prospecting. This paper presents an analytical study on the dispersion of torsional surface wave in a pre-stressed heterogeneous layer sandwiched between a pre-stressed anisotropic porous semi-infinite medium and gravitating anisotropic porous half-space. The non-homogeneity within the intermediate layer a...

متن کامل

Two-Dimensional Solute Transport with Exponential Initial Concentration Distribution and Varying Flow Velocity

The transport mechanism of contaminated groundwater has been a problematic issue for many decades, mainly due to the bad impact of the contaminants on the quality of the groundwater system. In this paper, the exact solution of two-dimensional advection-dispersion equation (ADE) is derived for a semi-infinite porous media with spatially dependent initial and uniform/flux boundary conditions. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 86 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012